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Abstract. In this work, we present an approach to language under-
standing using corpus-based and statistical language models based on
multigrams. Assuming that we can assign meanings to segments of words,
the n-multigram modelization is a good approach to model sequences
of segments that have semantic information associated to them. This
approach has been applied to the task of speech understanding in the
framework of a dialogue system that answers queries about train timeta-
bles in Spanish. Some experimental results are also reported.

1 Introduction

Nowadays, the use of automatic learning techniques for Language Modelling is
quite extensive in the field of Human Language Technologies. A good example
of this can be found in the development of Spoken Dialogue systems. Very im-
portant components of these systems, such as the Language Model of the speech
recognition component, the Language Model of the understanding component
and the dialogue structure, can be modelled by corpus-based and statistical
finite-state models. This is the case of the widely used n-gram models [1][2].

An n-gram model assigns a probability to a word depending on the previous
n-1 words observed in the recent history of that word in the sentence. In these
models, the word is the selected linguistic unit for the language modelization,
and the recent history considered for the model always has the same length. Over
the last few years, there has been an increasing interest in statistical language
models which try to take into account the dependencies among a variable number
of words; that is, stochastic models in which the probability associated to a word
depends on the occurrence of a variable number of words in its recent history.
This is the case of the grammar-based approaches [3][4][5], in which models
take into account variable-length dependencies by conditioning the probability
of each word with a context of variable length. In contrast, in segment-based
approaches such as multigrams [6][7][8], sentences are structured into variable-
length segments, and probabilities are assigned to segments instead of words.
In other words, multigram approaches to language modelling take segments of
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words as basic units; these models try to naturally model the fact that there are
certain concatenations of words that occur very frequently. These segments could
constitute one of the following: relevant linguistic units; syntactic or semantic
units; or a concatenation of words, which works well from the language modelling
point of view (independently of the linguistic relevance of the segments).

Language Understanding systems have many applications in several areas
of Natural Language Processing. Typical applications are train or plane travel
information retrieval, car navigation systems or information desks. In the last
few years, many efforts have been made in the development of natural language
dialog systems which allow us to extract information from databases. The inter-
action with the machine to obtain this kind of information requires some dialog
turns. In these turns, the user and the system interchange information in order
to achieve the objective: the answer to a query made by the user. Each turn (a
sequence of natural language sentences) of the user must be understood by the
system. Therefore, an acceptable behavior of the understanding component of
the system is essential to the correct performance of the whole dialog system.

Language understanding can be seen as a transduction process from sentences
to a representation of their meaning. Frequently, this semantic representation
consists of sequences of concepts (semantic units). Multigram models have been
applied to language modeling tasks [6][8]; however, as the multigram approach
is based on considering a sentence as a sequence of variable-length segments of
words, it could be interesting to apply this methodology to language understand-
ing.

In this work, we propose the application of multigram models to language
understanding. In this proposal, we associate semantic units to segments, and
we modelize the concatenation of semantic units as well as the association of
segments of words to each semantic unit. This approach has been applied to
the understanding process in the BASURDE dialog system [9]. The BASURDE
system answers telephone queries about railway timetables in Spanish.

This paper is organized as follows: in Section 2, the concept of n-multigram is
described. In Section 3, the task of language understanding is presented and in
Section 4, the application of n-multigram to language understanding is proposed.
In Section 5, the two grammatical inference techniques used in the experiments
are illustrated. Finally, results of the application of the n-multigram models to
a task of language understanding and some concluding remarks are presented.

2 The n-multigram Model

Let W be a vocabulary of words, and let w = w1 w2 w3 w4 be a sentence defined
on this vocabulary, where wi ∈ W, i = 1, . . . , 4. From a multigram framework
point of view, the sentence w has the set of all possible segmentations of the
sentence associated to it. Let S be this set of segmentations for w. If we use
the symbol # to express the concatenation of words which constitutes the same
segment, S is as follows:
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S =

⎧
⎪⎨

⎪⎩

w1 w2 w3 w4, w1 w2 w3#w4,
w1 w2#w3 w4, w1#w2 w3 w4,
w1 w2#w3#w4, w1#w2 w3#w4,
w1#w2#w3 w4, w1#w2#w3#w4

⎫
⎪⎬

⎪⎭

From a multigram language model point of view, the likelihood of a sentence
is computed by summing up the likelihood values of all possible segmentations
of the sentence into segments [6] [8]; let w be a sentence, and let S be the set of
all segmentations of w. The likelihood of the sentence L(w) given a multigram
language model is:

L(w) =
∑

s∈S

L(w, s) (1)

where, L(w, s) is the likelihood of the sentence w given the segmentation s.
The likelihood of any particular segmentation depends on the model assumed

to describe the dependencies between the segments. The most usual approach,
called n-multigram [8], assumes that the likelihood of a segment depends on the
n-1 segments that precede it. This approach can be seen as an extension of n-
gram models of words to n-gram models of segments. Therefore, the likelihood
of a segmentation is:

L(w, s) =
∏

τ

p(s(τ)|s(τ−n+1) · · · s(τ−1)) (2)

where s(τ) represents the τ -th segment in the segmentation s.
Due to the high number of parameters to estimate, it is convenient to define

classes of segments. The formula presented above becomes:

L(w, s) =
∏

τ

p
(
Cq(s(τ))|Cq(s(τ−n+1)) · · · Cq(s(τ−1))

)
p

(
s(τ)|Cq(s(τ))

)
(3)

where q is a function that assigns a class to each segment (it is generally assumed
that a segment is associated to only one class); Cq(si) is the class assigned to the
segment si; and p

(
si|Cq(si)

)
is the probability of the segment si in its class.

Thus, an n-multigram model based on classes of segments is completely de-
fined by: the probability distribution of sequences of classes, and the classification
function q.

As we mentioned above, to obtain the likelihood of a sentence L(w), all the
possible segmentations have to be taken into account. It can be computed as
follows:

L(w) = α(|w|) (4)

where α(t) is the likelihood of w1 · · ·wt, that is, the prefix of w of length t.
Considering that the number of words in the segments is limited by l, we can
define α(t) as:

α(t) =
l∑

i=1

αi(t) (5)
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where αi(t) is the likelihood of the sentence w1 · · ·wt which only takes into
account those segmentations whose last segment is composed by i words. This
value can be calculated as:

αi(t) =

⎧
⎪⎪⎨

⎪⎪⎩

1 : t = 0 ∧ i = 1

min(l,t−i)∑

r=1
αr(t − i) · p(wt

t−i+1
|wt−i

t−i−r+1) : 1 ≤ t ≤ |w| ∧ 1 ≤ i ≤ l

(6)

In the case of considering classes of segments (and assuming that each seg-
ment has only been associated to a class), (6) can be calculated by:

αi(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 : t = 0 ∧ i = 1

min(l,t−i)∑

r=1
αr(t − i) · p(wt

t−i+1|Cq(wt
t−i+1)

)·
p(Cq(wt

t−i+1)
|Cq(wt−i

t−i−r+1)
)

: 1 ≤ t ≤ |w| ∧ 1 ≤ i ≤ l

(7)

where Cq(wm
m−i) is the class associated to the segment wm−i# . . .#wm by the

function q, and p(wm
m−i|Cq(wm

m−i)) is the probability that this segment belongs
to the category Cq(wm

m−i).

3 Language Understanding

A language understanding system can be viewed as a transducer in which nat-
ural language sentences are the input and their corresponding semantic repre-
sentation (frames) are the output. In [10], an approach for the development of
language understanding systems that is based on automatic learning techniques
has been presented. In this approach, the process of translation is divided into
two phases: the first phase transduces the input sentence into a semantic sen-
tence (a sequence of semantic units) which is defined in a sequential Intermediate
Semantic Language (ISL). The second phase transduces the semantic sentence
into its corresponding frames. Automatic learning techniques are applied in the
first phase, and the second phase is performed by a simple rule-based system.

As the ISL sentences are sequential with the input language, we can perform
a segmentation of the input sentence into a number of intervals which is equal
to the number of semantic units in the corresponding semantic sentence. Let
W be the vocabulary of the task (set of words), and let V be the alphabet of
semantic units; each sentence w ∈ W ∗ has a pair (u,v) associated to it, where v
is a sequence of semantic units and u is a sequence of segments of words. That
is, v = v1v2 . . . vn, vi ∈ V, i = 1, . . . , n u = u1u2 . . . un, ui = wi1wi2 . . . wi|ui|

,

wij ∈ W, i = 1, . . . , n, j = 1, . . . , |ui|.
For example, in the BASURDE corpus, the sentence ”me podŕıa decir los

horarios de trenes para Barcelona” (can you tell me the railway timetables to
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Barcelona), whose translation in ISL could be consulta <hora salida> marcador
destino ciudad destino (query <depart time> destination marker destination city),
has the following pair associated to it, which is the output of the first phase
of our understanding approach.

(u,v)=(u1u2u3u4, v1v2v3v4) where:

Spanish English
u1: me podŕıa decir v1: consulta u1: can you tell me v1: query
u2: los horarios de trenes v2: <hora salida> u2: the railway timetables v2: <departure time>
u3: para v3: marcador destino u3: to v3: destination marker
u4: Barcelona v4: ciudad destino u4: Barcelona v4: destination city

The output for the second phase is the following frame:

(DEPART TIME)
DESTINATION CITY: Barcelona

4 Applying n-multigram Models to Language
Understanding

The first phase of our language understanding approach, that is, the semantic
segmentation of a sentence w, consists of dividing the sentence into a sequence
of segments (u = u1u2 . . . un) and associating a semantic unit vi ∈ V to each
segment ui. Due to the fact that the multigram approach considers sentences
as sequences of segments of variable length, it seems especially appropriate for
the semantic segmentation problem. In order to apply n-multigrams to language
understanding, the following considerations must be taken into account:

– The training corpus consists of a set of segmented and semantically labelled
sentences.

– The classes of segments are the semantic vocabulary V , which is obtained
from the definition of the ISL for the understanding task.

– A segment could be assigned to several classes, so the classification function
q must be adapted in order to provide a membership probability for each
segment in each class.

4.1 Learning the Semantic n-multigram Model

In an n-multigram model, there are two kind of probability distributions that
have to be estimated: a) the language model for the sequences of classes of
segments and b) the membership probability of segments in classes.

The probability distribution (a) is estimated as an n-gram model of classes of
segments from the sequences of semantic units v = v1v2 . . . vn, vi ∈ V, i = 1, . . . , n
of the training set.

A language model is learnt from the set of segments of words ui of the train-
ing set associated to each class. These language models provide the membership
probability of segments in classes (b). We have explored some approaches to au-
tomatically obtain these language models. In particular, we used n-gram mod-
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els, the Prefix-Tree Acceptor (PTA)1 estimated from the training set, and two
Grammatical Inference (GI) techniques (MGGI and ECGI) which are described
in section 5.

We define a function of segment classification q : Σ∗ → 2V

q(s) = {v1, . . . , v|q(s)|}, ∀vi ∈ V (8)

where q(s) is the set of all the classes such as p(s | vi) > 0.

4.2 The Semantic Segmentation

Once the model that represents the sequences of semantic units and the proba-
bility distributions of membership for each class are learnt, the process to obtain
the likelihood α is obtained through:

α =
l∑

i=1

∑

v∈q(wt
t−i+1)

αv
i (t) (9)

This formula (9) is an adaptation of (5) for the case of permitting the assig-
nation of more than one class to each segment. α(t) represents the accumulated
likelihood taking into account all the segmentations for the t first words of the
sentence (w1 . . . wt). And αv

i (t) represents the likelihood of all the segmenta-
tions of the t first words, taking into account only those that end with a segment
assigned to the class v and that have length i. It is calculated as follows:

αv
i (t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 : t = 0 ∧ i = 1
0 : t = 0 ∧ i > 1

l∑
r=1

p(wt
t−i+1|v) · ∑

v′∈q(wt−i
t−i−r+1)

αv′
r (t − i) · p(v|v′) : 1 ≤ t ≤ |w| ∧ 1 ≤ i ≤ l

(10)

The segmentation of maximum likelihood in terms of semantic units is ob-
tained by using the Viterbi algorithm. Let w = w1w2 · · ·w|w| be the sentence to
analyze. The best segmentation is given by:

(u, v) = argmax
s∈S, q(sτ )

L(w, s) (11)

where S is the set of all segmentations of w, and q(sτ ) is the set of all classes
that can be assigned to the τ -th segment of the segmentation s.

5 The Two GI Techniques: The MGGI Methodology and
the ECGI Algorithm

As we mentioned above, we used two Grammatical Inference techniques in order
to obtain the language models which represent the membership probability of

1 The finite state automaton that only accepts the strings in the training set.
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segments in classes. These techniques are the Morphic Generator Grammatical
Inference (MGGI) methodology [11][12] and the Error Correcting Grammatical
Inference (ECGI) algorithm [13][14]. In this section, we briefly describe these
two GI techniques.

5.1 MGGI

The Morphic Generator Grammatical Inference (MGGI) methodology is a gram-
matical inference technique that allows us to obtain a certain variety of regular
languages. The application of this methodology implies the definition of a re-
naming function, that is, each symbol of each input sample is renamed following
a given function g. Different definitions of the function g will produce different
models (stochastic regular automata).

Let R be a sample over the alphabet Σ. Let Σ
′
be a finite alphabet. Let h be

a letter-to-letter morphism, h : Σ
′∗ → Σ∗, and g a renaming function, g : R →

Σ
′∗

. The Regular Language, L, generated by the MGGI-inferred grammar, G,
is related to R through the expression: L = h(l(g(R))), where l(g(R)) is inferred
from g(R) through the 2-Testable in the Strict Sense (2-TSS) inference algorithm
[15].

Next, we describe the MGGI methodology through an example. In order
to better explain its performance, we show the 2-TSS model estimated from a
training set and the finite automaton estimated through the MGGI methodology
from the same training set:

Let Σ = {a, b} be an alphabet and let R = {aabaa, abba, abbbba, aabbbba}
be a training set over Σ.

a) 2-Testable in the Strict Sense inference algorithm (its stochastic version is
equivalent to bigrams):

A1 q0 q1
a

a

q2
b

a

b

Fig. 1. The finite automaton inferred from R by the 2-Testable in the Strict Sense
algorithm

The language accepted by the automaton of Figure 1 is: L(A1) = a + a(b +
a)∗a. That is, the strings in L(A1) begin and end with the symbol a and contain
any segment over the alphabet Σ. For example, a ∈ L(A1), aaa ∈ L(A1), ababa ∈
L(A1), abbba ∈ L(A1), etc.

b) MGGI algorithm:
The renaming function g : Σ∗ → Σ

′∗
is defined in this example as the relative

position, considering that each string is divided into 2 intervals. This definition
allows distinguishing between the first and the second parts of the strings.

g(R) = {a1a1b1a2a2, a1b1b2a2, a1b1b1b2b2a2, a1a1b1b1b2b2a2}
The language accepted by the automaton in Figure 2 is: L(A2) = a+b+a+.

That is, the strings in L(A2) contain a sequence of 1 or more symbols a, followed
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A2 p0 p1
a

a

p2
b

b

p3
a

p4

b

a

a
b

Fig. 2. The finite automaton inferred from R by MGGI algorithm, with a relative
position renaming function

by a sequence of 1 or more symbols b, and followed by a sequence of 1 or more
symbols a. For example abbba ∈ L(A2) but a /∈ L(A2), aaa /∈ L(A2) and ababa /∈
L(A2). As can be observed from this example, the language inferred by the
MGGI methodology is more similar to the strings in the training set than those
inferred by the 2-TSS algorithm.

There is another interesting feature of the MGGI methodology. Given a task
(a language to modelize), we can choose an adequate definition of a renaming
function g. Different definitions of this function produce different models.

5.2 ECGI

The ECGI algorithm is a Grammatical Inference algorithm that infers a finite-
state model in an incremental way and is based on an error correcting parsing.
The ECGI builds a finite-state automaton through the following incremental
procedure: initially, a trivial automaton is built from the first training word.
Then, for every new word, which can not be exactly recognized by the current
automaton, the automaton is updated by adding to it those states and transi-
tions which are required to accept the new word. To determine such states and
transitions, an error correcting parsing is used to find the best path for the in-
put word in the current automaton. The error rules defined for the analysis are:
substitution, insertion and deletion of symbols. This way, the error correcting
parsing finds the word in the current inferred language which is closest to the
new word, according to the Levenshtein distance. To generate an automaton
which is free of loops and circuits, some heuristic restrictions are imposed in the
process of adding new states and transitions. Thus, the inference procedure at-
tempts to model the duration and the position of the substructures that appear
in the training data. Figure 3 shows the inference process of the ECGI algorithm
using the same training set of the examples in Figures 1 and 2.

6 Experimental Results

In order to evaluate the performance of the n-multigram models in a language
understanding task, a set of experiments was conducted on the BASURDE [9]
[10] dialog system, which answers queries about train timetables by telephone in
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q0 q1
a

q2
a

q3
b

q4
a

q5
a

(a) Initial automaton inferred from aabaa

q0 q1
a

q2
a

q6

b q3

b
q4

a

q5
a

a

b

(b) Automaton after analyzing the string abba. A substitution rule and a deletion
rule have been applied to accept this string. A new state, q6, and some transitions

have been added.

q0 q1
a

q2

a

q6
b

q7

b

q3

b
q4

a

q5
a

a

b

q8
b

b

(c) Automaton after analyzing the string abbbba. Two insertion rules have been used.
Two new states, q7 and q8, and some transitions have been added.

q0 q1
a

q9

a

q2

a

q6
b

q7

b

q3

b
q4

a

q5
a

a

b

q8
b

b
a

(d) Automaton after analyzing the string aabbbba. An insertion rule has been used. A
new state, q9, and some transitions have been added.

Fig. 3. The inference process of the ECGI algorithm using R

Spanish. The corpus consisted of a set of 215 dialogs, obtained through a Wizard
of Oz technique [16]. These dialogs contained 1,440 user turns, with 14,902 words
and a vocabulary of 637 different words. A cross-validation procedure was used
to evaluate the performance of our language understanding models. To this end,
the experimental set was randomly split into five subsets of 288 turns. Our
experiment consisted of five trials, each of which had a different combination of
one subset taken from the five subsets as the test set, with the remaining 1,168
turns being used as the training set.

We defined several measures to evaluate the accuracy of the strategy in both
phases of the understanding process:
– The percentage of correct sequences of semantic units (%cssu).
– The percentage of correct semantic units (%csu).
– The semantic precision (%Ps), which is the rate between the number of

correct proposed semantic units and the number of proposed semantic units.
– The semantic recall (%Rs), which is the rate between the number of correct

proposed semantic units and the number of semantic units in the reference.
– The percentage of correct frames (%cf), which is the percentage of resulting

frames that are exactly the same as the corresponding reference frame.
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Table 1. Results of two language understanding models based on bi-multigrams: bi-
multigram-BI y bi-multigram-TRI

Semantic Segmentation %cssu %csu %Ps %Rs

bi-multigram-BI 68.6 87.8 91.0 91.3
bi-multigram-TRI 69.2 87.8 91.4 90.9
Frame Transduction %cf %cfs %Pf %Rf

bi-multigram-BI 78.5 85.7 88.9 91.3
bi-multigram-TRI 79.0 86.1 89.6 91.0

– The percentage of correct frame slots (frame name and its attributes) (%cfs).
– The frame precision (%Pf ), which is the rate between the number of correct

proposed frame slots and the number of proposed frame slots.
– The frame recall (%Rf ), which is the rate between the number of correct

proposed frame slots and the number of frame slots in the reference.

A first set of experiments was performed using the orthographic transcrip-
tion of user turns. In these experiments, different language understanding mod-
els based on multigrams were used. In all the experiments, the modelization
of the sequences of segments (semantic units) was done by the bi-multigram
probabilities. In other words, the probability that a segment of words repre-
senting a semantic unit appears depends on the previous segment (the term
p

(
Cq(s(τ))|Cq(s(τ−n+1)) · · · Cq(s(τ−1))

)
in formula (3)). The difference among the

experiments consisted in which classification function (of the segments in classes)
was chosen (the term p

(
s(τ)|Cq(s(τ))

)
in formula (3)). Table 1 shows the results

obtained using bigrams and trigrams of words to assign membership probabilities
of the segments to each class.

Table 2 shows the results obtained by using the PTA, the MGGI and the
ECGI techniques (described in section 5). These techniques obtain stochastic
automata that represent the segments of words that can be associated to each
class. These automata represent a modelization of the training samples and
supply the membership probabilities associated to the segments. In order to
increase the coverage of these models, we used a smoothing method for stochastic
finite automata, which was recently proposed in [17].

These results for all techniques are similar. Nevertheless, the models obtained
by GI techniques slightly outperform the n-gram models; this could be explained
by the fact that the GI techniques better represent the structure of the segments
of the training set.

In order to study the performance of the proposed models in real situations,
we also performed a second set of experiments using the recognized utterances
supplied by a speech recognizer from the same set of dialogs. The recognizer
[9] used Hidden Markov Models as acoustic models and bigrams as the lan-
guage model; its Word Accuracy for the BASURDE corpus was 80.7%. In these
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Table 2. Results for the language understanding models: bi-multigram-PTA, bi-
multigram-MGGI and bi-multigram-ECGI

Semantic Segmentation %cssu %csu %Ps %Rs

bi-multigram-PTA 69.0 88.0 91.5 91.1
bi-multigram-MGGI 69.3 88.3 91.6 91.3
bi-multigram-ECGI 68.9 88.3 91.4 91.8
Frame transduction %cf %cfs %Pf %Rf

bi-multigram-PTA 78.5 86.0 89.3 91.0
bi-multigram-MGGI 79.0 86.3 89.6 91.4
bi-multigram-ECGI 80.0 87.2 90.1 92.5

Table 3. Results for the understanding models based on bi-multigrams, with different
models of membership probabilities, using the output of the recognizer

Semantic Segmentation %cssu %csu %Ps %Rs

bi-multigram-BI 44.3 74.3 81.6 82.5
bi-multigram-TRI 44.3 74.4 82.1 82.0
bi-multigram-AP 44.3 74.4 81.7 82.4
bi-multigram-MGGI 44.4 74.6 81.8 82.7
bi-multigram-ECGI 44.7 74.9 81.9 83.2
Frame Transduction %cf %cfs %Pf %Rf

bi-multigram-BI 54.9 69.6 77.6 81.7
bi-multigram-TRI 55.0 69.8 78.1 81.4
bi-multigram-AP 55.0 69.3 77.5 81.5
bi-multigram-MGGI 55.4 70.1 78.1 81.8
bi-multigram-ECGI 56.4 70.8 78.7 82.5

experiments, the models were the same as before; that is, they were estimated
from the orthographic transcription of the sentences, but the test was done with
the recognized sentences. Table 3 shows the results for the recognized dialogs,
using the same understanding models based on bi-multigrams as in the previous
experiments (Tables 1 and 2).

The results show a generalized reduction in the performance of the under-
standing system, if we compare them with those corresponding to transcribed
utterances. This reduction is especially significant (over 20%) for %cssu and
%cf. They respectively measure the percentage of sentences that are segmented
perfectly and the percentage of sentences that are perfectly translated to their
corresponding frames. Although less than 42% of the sentences are correctly
recognized, the understanding system, bi-multigram-ECGI, is able to correctly
understand 56% of the sentences. As far as recall and precision, the reduction is
much lower, around 10% in most cases. The best model was the bi-multigram-
ECGI. It obtained a Precision (Pf ) and a Recall (Rf ) of 78.7% and 82.5%,
respectively, at frame level.
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7 Conclusions

We have presented an approach to language understanding that is based on
multigrams. In our language understanding system, segments of words represent
semantic information. Therefore, considering a language modelization based on
variable length segments is an appropriate approach. We have proposed different
methods to assign segments to semantic units and we have applied our language
understanding system based on multigrams to a dialog task. Our results are
similar to those obtained by other approaches [10] and show that the proposed
methodology is appropriate for the task. This modelization has the advantage
that different models can be used to represent the segments associated to the
semantic units; even different modelizations can be applied to different semantic
units.

We think that the understanding system could be improved by adding infor-
mation about the relevant keywords for each class in the classification function.
It would also be interesting to develop techniques to automatically obtain the
set of classes of segments, that is the set of semantic units, which in our system
are manually defined.
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